Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628171

RESUMEN

Gangliosides (glycosphingolipids containing one or more sialic acids) are highly expressed in neural tissues in vertebrates, and four species (GM1a, GD1a, GD1b, GT1b) are predominant in mammalian brains. GM3 is the precursor of each of these four species and is the major ganglioside in many nonneural tissues. GM3 synthase (GM3S), encoded by ST3GAL5 gene in humans, is a sialyltransferase responsible for synthesis of GM3 from its precursor, lactosylceramide. ST3GAL5 mutations cause an autosomal recessive form of severe infantile-onset neurological disease characterized by progressive microcephaly, intellectual disability, dyskinetic movements, blindness, deafness, intractable seizures, and pigment changes. Some of these clinical features are consistently present in patients with ST3GAL5 mutations, whereas others have variable expression. GM3S knockout (KO) mice have deafness and enhanced insulin sensitivity, but otherwise do not display the above-described neurological defects reported in ST3GAL5 patients. The authors present an overview of physiological functions and pathological aspects of gangliosides based on findings from studies of GM3S KO mice and discuss differential phenotypes of GM3S KO mice versus human GM3S-deficiency patients.


Asunto(s)
Sordera , Epilepsia , Sialiltransferasas , Animales , Sordera/enzimología , Modelos Animales de Enfermedad , Epilepsia/enzimología , Humanos , Ratones , Ratones Noqueados , Sialiltransferasas/deficiencia , Sialiltransferasas/metabolismo
2.
Genet Med ; 24(2): 492-498, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34906476

RESUMEN

PURPOSE: Biallelic loss-of-function variants in ST3GAL5 cause GM3 synthase deficiency (GM3SD) responsible for Amish infantile epilepsy syndrome. All Amish patients carry the homozygous p.(Arg288Ter) variant arising from a founder effect. To date only 10 patients from 4 non-Amish families have been reported. Thus, the phenotypical spectrum of GM3SD due to other variants and other genetic backgrounds is still poorly known. METHODS: We collected clinical and molecular data from 16 non-Amish patients with pathogenic ST3GAL5 variants resulting in GM3SD. RESULTS: We identified 12 families originating from Reunion Island, Ivory Coast, Italy, and Algeria and carrying 6 ST3GAL5 variants, 5 of which were novel. Genealogical investigations and/or haplotype analyses showed that 3 of these variants were founder alleles. Glycosphingolipids quantification in patients' plasma confirmed the pathogenicity of 4 novel variants. All patients (N = 16), aged 2 to 12 years, had severe to profound intellectual disability, 14 of 16 had a hyperkinetic movement disorder, 11 of 16 had epilepsy and 9 of 16 had microcephaly. Other main features were progressive skin pigmentation anomalies, optic atrophy or pale papillae, and hearing loss. CONCLUSION: The phenotype of non-Amish patients with GM3SD is similar to the Amish infantile epilepsy syndrome, which suggests that GM3SD is associated with a narrow and severe clinical spectrum.


Asunto(s)
Epilepsia , Epilepsia/complicaciones , Epilepsia/genética , Homocigoto , Humanos , Sialiltransferasas/deficiencia , Sialiltransferasas/genética
3.
Biochem Biophys Res Commun ; 575: 78-84, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34461439

RESUMEN

Alterations in sialylation of terminal residues of glycoproteins have been implicated in forming tumor-associated glycans. ST6GALNAC transfers sialyl moiety to N-acetylgalactosamine residue via α2,6 linkage. Although the oncogenic characteristics of ST6GALNACI or II have been demonstrated in various cancer cells, the impact of ST6GALNACIII on tumor progression remains undefined. In this study, we evaluated the effect of ST6GALNACIII knockdown on the growth of A549 non-small cell lung cancer cells. ST6GALNACIII depletion resulted in significant retardation in growth of A549 cells under various culture conditions, including collagen-supported 3D culture and anchorage-independent soft agar culture conditions. Liquid chromatography with tandem mass spectrometry revealed that two glycopeptides of transferrin receptor protein 1 (TFR1) containing N-acetylhexosamine-sialic acid were not detected in ST6GALNACIII-depleted A549 cells compared with control cells. Subsequent lectin binding assay, western blotting, and real-time RT-PCR indicated that TFR1 sialylation was not significantly changed, but TFR1 protein and mRNA expressions were decreased after ST6GALNACIII knockdown. However, cell growth retardation by ST6GALNACIII knockdown was partially rescued by TFR1 overexpression. Additionally, TFR1 mRNA degradation was accelerated following ST6GALNACIII knockdown with concomitant reduction in mRNA levels of iron regulatory protein 1 and 2, the upstream regulators of TFR1 mRNA stability. Therefore, our results indicated an important role of ST6GALNACIII in promoting A549 cell growth through quantitative regulation of TFR1 expression and provided therapeutic implications for ST6GALNACIII targeting in tumor growth suppression in vivo.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/prevención & control , Hierro/metabolismo , Neoplasias Pulmonares/prevención & control , Estabilidad del ARN , Receptores de Transferrina/antagonistas & inhibidores , Sialiltransferasas/deficiencia , Antígenos CD/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Receptores de Transferrina/metabolismo
4.
J Neurophysiol ; 126(2): 532-539, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34232791

RESUMEN

Channelopathies caused by mutations in genes encoding ion channels generally produce a clear change in channel function. Accordingly, mutations in KCNC1, which encodes the voltage-dependent Kv3.1 potassium channel, result in progressive myoclonus epilepsy as well as other developmental and epileptic encephalopathies, and these have been shown to reduce or fully abolish current amplitude. One exception to this is the mutation A513V Kv3.1b, located in the cytoplasmic C-terminal domain of the channel protein. This de novo variant was detected in a patient with epilepsy of infancy with focal migrating seizures (EIFMS), but no difference could be detected between A513V Kv3.1 current and that of wild-type Kv3.1. Using both biochemical and electrophysiological approaches, we have now confirmed that this variant produces functional channels but find that the A513V mutation renders the channel completely insensitive to regulation by phosphorylation at S503, a nearby regulatory site in the C-terminus. In this respect, the mutation resembles those in another channel, KCNT1, which are the major cause of EIFMS. Because the amplitude of Kv3.1 current is constantly adjusted by phosphorylation in vivo, our findings suggest that loss of such regulation contributes to EIFMS phenotype and emphasize the role of channel modulation for normal neuronal function.NEW & NOTEWORTHY Ion channel mutations that cause serious human diseases generally alter the biophysical properties or expression of the channel. We describe a de novo mutation in the Kv3.1 potassium channel that causes severe intellectual disability with early-onset epilepsy. The properties of this channel appear identical to those of wild-type channels, but the mutation prevents phosphorylation of the channel by protein kinase C. Our findings emphasize the role of channel modulation in normal brain function.


Asunto(s)
Epilepsia/genética , Mutación , Canales de Potasio Shaw/metabolismo , Sialiltransferasas/deficiencia , Animales , Células CHO , Cricetinae , Cricetulus , Epilepsia/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Canales de Potasio Shaw/química , Canales de Potasio Shaw/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
5.
J Neurochem ; 158(3): 694-709, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34081777

RESUMEN

Gangliosides are glycosphingolipids abundantly expressed in the vertebrate nervous system, and are classified into a-, b-, or c-series according to the number of sialic acid residues. The enzyme GD3 synthase converts GM3 (an a-series ganglioside) into GD3, a b-series ganglioside highly expressed in the developing and adult retina. The present study evaluated the visual system of GD3 synthase knockout mice (GD3s-/- ), morphologically and functionally. The absence of b- series gangliosides in the retinas of knockout animals was confirmed by mass spectrometry imaging, which also indicated an accumulation of a-series gangliosides, such as GM3. Retinal ganglion cell (RGC) density was significantly reduced in GD3s-/- mice, with a similar reduction in the number of axons in the optic nerve. Knockout animals also showed a 15% reduction in the number of photoreceptor nuclei, but no difference in the bipolar cells. The area occupied by GFAP-positive glial cells was smaller in GD3s-/- retinas, but the number of microglial cells/macrophages did not change. In addition to the morphological alterations, a 30% reduction in light responsiveness was detected through quantification of pS6-expressing RGC, an indicator of neural activity. Furthermore, electroretinography (ERG) indicated a significant reduction in RGC and photoreceptor electrical activity in GD3s-/- mice, as indicated by scotopic ERG and pattern ERG (PERG) amplitudes. Finally, evaluation of the optomotor response demonstrated that GD3s-/- mice have reduced visual acuity and contrast sensitivity. These results suggest that b-series gangliosides play a critical role in regulating the structure and function of the mouse visual system.


Asunto(s)
Sensibilidad de Contraste/fisiología , Eliminación de Gen , Retina/enzimología , Sialiltransferasas/deficiencia , Sialiltransferasas/genética , Agudeza Visual/fisiología , Animales , Electrorretinografía/métodos , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Estimulación Luminosa/métodos
6.
Trends Mol Med ; 27(6): 520-523, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33714697

RESUMEN

De novo glycosphingolipid (GSL) biosynthesis defects cause severe neurological diseases, including hereditary sensory and autonomic neuropathy type 1A (HSAN1A), GM3 synthase deficiency, and hereditary spastic paraplegia type 26 (HSPG26), each lacking effective treatment. Recombinant adeno-associated virus (AAV)-mediated gene therapy has emerged as a powerful treatment for monogenic diseases and might be particularly suitable for these neurological conditions.


Asunto(s)
Dependovirus/genética , Epilepsia/terapia , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Neuropatías Hereditarias Sensoriales y Autónomas/terapia , Proteínas Recombinantes/administración & dosificación , Sialiltransferasas/deficiencia , Paraplejía Espástica Hereditaria/terapia , Epilepsia/genética , Vectores Genéticos/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Humanos , Fenotipo , Proteínas Recombinantes/genética , Sialiltransferasas/genética , Paraplejía Espástica Hereditaria/genética
7.
Glycobiology ; 31(5): 557-570, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33242079

RESUMEN

Sialic acids are unique sugars with negative charge and exert various biological functions such as regulation of immune systems, maintenance of nerve tissues and expression of malignant properties of cancers. Alpha 2,6 sialylated N-glycans, one of representative sialylation forms, are synthesized by St6gal1 or St6gal2 gene products in humans and mice. Previously, it has been reported that St6gal1 gene is ubiquitously expressed in almost all tissues. On the other hand, St6gal2 gene is expressed mainly in the embryonic and perinatal stages of brain tissues. However, roles of St6gal2 gene have not been clarified. Expression profiles of N-glycans with terminal α2,6 sialic acid generated by St6gal gene products in the brain have never been directly studied. Using conventional lectin blotting and novel sialic acid linkage-specific alkylamidationmass spectrometry method (SALSA-MS), we investigated the function and expression of St6gal genes and profiles of their products in the adult mouse brain by establishing KO mice lacking St6gal1 gene, St6gal2 gene, or both of them (double knockout). Consequently, α2,6-sialylated N-glycans were scarcely detected in adult mouse brain tissues, and a majority of α2,6-sialylated glycans found in the mouse brain were O-linked glycans. The majority of these α2,6-sialylated O-glycans were shown to be disialyl-T antigen and sialyl-(6)T antigen by mass spectrometry analysis. Moreover, it was revealed that a few α2,6-sialylated N-glycans were produced by the action of St6gal1 gene, despite both St6gal1 and St6gal2 genes being expressed in the adult mouse brain. In the future, where and how sialylated O-linked glycoproteins function in the brain tissue remains to be clarified.


Asunto(s)
Encéfalo/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Sialiltransferasas/genética , Animales , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sialiltransferasas/deficiencia , Sialiltransferasas/metabolismo , beta-D-Galactósido alfa 2-6-Sialiltransferasa
8.
ASN Neuro ; 12: 1759091420938175, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32664815

RESUMEN

Ganglioside GM3 synthase (α-2,3-sialyltransferase, ST3GAL5, GM3S) is a key enzyme involved in the biosynthesis of gangliosides. ST3GAL5 deficiency causes an absence of GM3 and all downstream biosynthetic derivatives. The affected individuals manifest deafness, severe irritability, intractable seizures, and profound intellectual disability. To investigate whether deficiency of GM3 is involved in seizure susceptibility, we induced seizures with different chemoconvulsants in ST3GAL5 knockout mice. We report here that ST3GAL5 knockout mice are hyperactive and more susceptible to seizures induced by chemoconvulsants, including kainate and pilocarpine, compared with normal controls. In the hippocampal dentate gyrus, loss of GM3 aggravates seizure-induced aberrant neurogenesis. These data indicate that GM3 and gangliosides derived from GM3 may serve as important regulators of epilepsy and may play an important role in aberrant neurogenesis associated with seizures.


Asunto(s)
Pilocarpina/toxicidad , Convulsiones/inducido químicamente , Convulsiones/enzimología , Sialiltransferasas/deficiencia , Animales , Giro Dentado/efectos de los fármacos , Giro Dentado/enzimología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Convulsiones/genética , Sialiltransferasas/genética
10.
Biochem J ; 477(6): 1179-1201, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32141499

RESUMEN

Fucosyltransferase 8 (FUT8) and ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) are glycosyltransferases that catalyze α1,6-fucosylation and α2,6-sialylation, respectively, in the mammalian N-glycosylation pathway. They are aberrantly expressed in various human diseases. FUT8 is non-glycosylated but is responsible for the fucosylation of ST6GAL1. However, the mechanism for the interaction between these two enzymes is unknown. In this study, we show that serum levels of α2,6-sialylated N-glycans are increased in Fut8-/- mice, whereas the mRNA and protein levels of ST6GAL1 are unchanged in mouse live tissues. The level of α2,6-sialylation on IgG was also enhanced in Fut8-/- mice along with ST6GAL1 catalytic activity increase in both serum and liver. Moreover, it was observed that ST6GAL1 prefers non-fucosylated substrates. Interestingly, increased core fucosylation accompanied by a reduction in α2,6-sialylation, was detected in rheumatoid arthritis patient serum. These findings provide new insight into the interactions between FUT8 and ST6GAL1.


Asunto(s)
Antígenos CD/genética , Fucosiltransferasas/deficiencia , Fucosiltransferasas/genética , Sialiltransferasas/deficiencia , Sialiltransferasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Femenino , Fucosa/genética , Fucosa/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilación , Humanos , Ratones , Ratones Noqueados , Persona de Mediana Edad
11.
PLoS One ; 15(2): e0229269, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32084196

RESUMEN

Psychiatric disorders including depression and anxiety comprise a broad range of conditions with different symptoms. We have developed a mouse model of depression/anxiety in mice deficient in the St3gal4 gene. In this study, we performed a comparative analysis of urinary volatile organic compounds (VOCs) in St3gal4-deficient (St3gal4-KO) and wild-type mice using gas chromatography-mass spectrometry, and we screened 18 putative VOCs. Principal component analysis (PCA) based on these VOCs identified a major group of 11 VOCs, from which two groups were clarified by hierarchical clustering analysis. One group including six VOCs (pentanoic acid, 4-methyl-, ethyl ester; 3-heptanone, 6-methyl; benzaldehyde; 5,9-undecadien-2-ol, 6,10-dimethyl; and unknown compounds RI1291 and RI1237) was correlated with the startle response (r = 0.620), which is related to an unconscious defensive response. The other group including two VOCs (beta-farnesene and alpha-farnesene) comprised pheromones which increased in KO mice. Next, male mice underwent a social behavior test with female mice in the estrus stage, showing reduced access of KO male mice to female mice. Comparative analysis of urinary VOCs before and after encounters revealed that the six VOCs were not changed by these encounters. However, in WT mice, the two farnesenes increased after the encounters, reaching the level observed in KO mice, which was not altered following the encounter. Taken together, these results indicated that St3gal4 was involved in modulating urinary VOCs. Moreover, VOC clusters discovered by comparison of St3gal4-KO mice with WT mice were correlated with differential emotional behaviors.


Asunto(s)
Ansiedad/orina , Depresión/orina , Metabolómica , Compuestos Orgánicos Volátiles/orina , Animales , Ansiedad/metabolismo , Depresión/metabolismo , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Ratones , Sialiltransferasas/deficiencia , Sialiltransferasas/genética , Compuestos Orgánicos Volátiles/metabolismo
12.
FEBS Open Bio ; 10(1): 56-69, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31622539

RESUMEN

Myogenesis is a physiological process which involves the proliferation of myoblasts and their differentiation into multinucleated myotubes, which constitute the future muscle fibers. Commitment of myoblasts to differentiation is regulated by the balance between the myogenic factors Pax7 and MyoD. The formation of myotubes requires the presence of glycans, especially N-glycans, on the cell surface. We examined here the involvement of α2,6 sialylation during murine myoblastic C2C12 cell differentiation by generating a st6gal1-knockdown C2C12 cell line; these cells exhibit reduced proliferative potential and precocious differentiation due to the low expression of Pax7. The earlier fusion of st6gal1-knockdown cells leads to a high fusion index and a drop in reserve cells (Pax7+ /MyoD- ). In st6gal1-knockdown cells, the Notch pathway is inactivated; consequently, Pax7 expression is virtually abolished, leading to impairment of the proliferation rate. All these results indicate that the decrease in α2,6 sialylation of N-glycans favors the differentiation of most cells and provokes a significant loss of reserve cells.


Asunto(s)
Diferenciación Celular , Mioblastos/citología , Mioblastos/metabolismo , Sialiltransferasas/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Ratones , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Sialiltransferasas/deficiencia , beta-D-Galactósido alfa 2-6-Sialiltransferasa
13.
Sci Rep ; 9(1): 13634, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541165

RESUMEN

ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2 (ST8SIA2) synthesizes polysialic acid (PSA), which is essential for brain development. Although previous studies reported that St8sia2-deficient mice that have a mixed 129 and C57BL/6 (B6) genetic background showed mild and variable phenotypes, the reasons for this remain unknown. We hypothesized that this phenotypic difference is caused by diversity in the expression or function of flanking genes of St8sia2. A genomic polymorphism and gene expression analysis in the flanking region revealed reduced expression of insulin-like growth factor 1 receptor (Igf1r) on the B6 background than on that of the 129 strain. This observation, along with the finding that administration of an IGF1R agonist during pregnancy increased litter size, suggests that the decreased expression of Igf1r associated with ST8SIA2 deficiency caused lethality. This study demonstrates the importance of gene expression level in the flanking regions of a targeted null allele having an effect on phenotype.


Asunto(s)
Regulación hacia Abajo , Perfilación de la Expresión Génica/métodos , Receptor IGF Tipo 1/genética , Sialiltransferasas/deficiencia , Animales , Femenino , Regulación de la Expresión Génica , Genes Letales , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Factor I del Crecimiento Similar a la Insulina/análogos & derivados , Factor I del Crecimiento Similar a la Insulina/farmacología , Tamaño de la Camada/efectos de los fármacos , Mutación con Pérdida de Función , Masculino , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple , Embarazo , Receptor IGF Tipo 1/agonistas
14.
Int J Mol Sci ; 20(11)2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31185614

RESUMEN

Gangliosides are widely expressed in almost all tissues and cells and are also considered to be essential in the development and maintenance of various organs and tissues. However, little is known about their roles in bone metabolism. In this study, we investigated the effects of genetic deletion of ganglioside D3 (GD3) synthase, which is responsible for the generation of all b-series gangliosides, on bone metabolism. Although b-series gangliosides were not expressed in osteoblasts, these gangliosides were expressed in pre-osteoclasts. However, the expression of these gangliosides was decreased after induction of osteoclastogenesis by receptor activator of nuclear factor kappa-B ligand (RANKL). Three-dimensional micro-computed tomography (3D-µCT) analysis revealed that femoral cancellous bone mass in GD3 synthase-knockout (GD3S KO) mice was higher than that in wild type (WT) mice at the age of 40 weeks, although there were no differences in that between GD3S KO and WT mice at 15 weeks old. Whereas bone formation parameters (osteoblast numbers/bone surface and osteoblast surface/bone surface) in GD3S KO mice did not differ from WT mice, bone resorption parameters (osteoclast numbers/bone surface and osteoclast surface/bone surface) in GD3S KO mice became significantly lower than those in WT mice at 40 weeks of age. Collectively, this study demonstrates that deletion of GD3 synthase attenuates bone loss that emerges with aging.


Asunto(s)
Envejecimiento/patología , Resorción Ósea/genética , Sialiltransferasas/genética , Animales , Células Cultivadas , Gangliósidos/metabolismo , Ratones , Osteoclastos/metabolismo , Osteoclastos/patología , Osteogénesis , Ligando RANK/metabolismo , Células RAW 264.7 , Sialiltransferasas/deficiencia
16.
Neurobiol Aging ; 77: 128-143, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30797170

RESUMEN

Although it was suggested that gangliosides play an important role in the binding of amyloid fragments to neuronal cells, the exact role of gangliosides in Alzheimer's disease (AD) pathology remains unclear. To understand the role of gangliosides in AD pathology in vivo, we crossed st3gal5-deficient (ST3-/-) mice that lack major brain gangliosides GM1, GD1a, GD3, GT1b, and GQ1b with 5XFAD transgenic mice that overexpress 3 mutant human amyloid proteins AP695 and 2 presenilin PS1 genes. We found that ST3-/- 5XFAD mice have a significantly reduced burden of amyloid depositions, low level of neuroinflammation, and did not exhibit neuronal loss or synaptic dysfunction. ST3-/- 5XFAD mice performed significantly better in a cognitive test than wild-type (WT) 5XFAD mice, which was comparable with WT nontransgenic mice. Treatment of WT 5XFAD mice with the sialic acid-specific Limax flavus agglutinin resulted in substantial improvement of AD pathology to a level of ST3-/- 5XFAD mice. Thus, our findings highlight an important role for gangliosides as a target for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/etiología , Gangliósidos/fisiología , Terapia Molecular Dirigida , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Proteínas Amiloidogénicas/metabolismo , Animales , Gangliósidos/deficiencia , Inflamación , Lectinas/administración & dosificación , Ratones Endogámicos C57BL , Ratones Transgénicos , Ácidos Siálicos/administración & dosificación , Sialiltransferasas/deficiencia
17.
Mol Genet Metab ; 126(4): 475-488, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30691927

RESUMEN

GM3 synthase, encoded by ST3GAL5, initiates synthesis of all downstream cerebral gangliosides. Here, we present biochemical, functional, and natural history data from 50 individuals homozygous for a pathogenic ST3GAL5 c.862C>T founder allele (median age 8.1, range 0.7-30.5 years). GM3 and its derivatives were undetectable in plasma. Weight and head circumference were normal at birth and mean Apgar scores were 7.7 ±â€¯2.0 (1 min) and 8.9 ±â€¯0.5 (5 min). Somatic growth failure, progressive microcephaly, global developmental delay, visual inattentiveness, and dyskinetic movements developed within a few months of life. Infantile-onset epileptic encephalopathy was characterized by a slow, disorganized, high-voltage background, poor state transitions, absent posterior rhythm, and spike trains from multiple independent cortical foci; >90% of electrographic seizures were clinically silent. Hearing loss affected cochlea and central auditory pathways and 76% of children tested failed the newborn hearing screen. Development stagnated early in life; only 13 (26%) patients sat independently (median age 30 months), three (6%) learned to crawl, and none achieved reciprocal communication. Incessant irritability, often accompanied by insomnia, began during infancy and contributed to high parental stress. Despite catastrophic neurological dysfunction, neuroimaging showed only subtle or no destructive changes into late childhood and hospitalizations were surprisingly rare (0.2 per patient per year). Median survival was 23.5 years. Our observations corroborate findings from transgenic mice which indicate that gangliosides might have a limited role in embryonic neurodevelopment but become vital for postnatal brain growth and function. These results have critical implications for the design and implementation of ganglioside restitution therapies.


Asunto(s)
Epilepsia/tratamiento farmacológico , Epilepsia/genética , Gangliósidos/fisiología , Sialiltransferasas/deficiencia , Adolescente , Adulto , Alelos , Puntaje de Apgar , Niño , Preescolar , Epilepsia/complicaciones , Femenino , Glicoesfingolípidos/sangre , Homocigoto , Humanos , Lactante , Masculino , Microcefalia , Estudios Retrospectivos , Convulsiones , Sialiltransferasas/sangre , Sialiltransferasas/genética , Estados Unidos , Adulto Joven
18.
Curr Eye Res ; 44(6): 664-670, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30688114

RESUMEN

Purpose: Most complex gangliosides in vertebrates are formed from ganglioside GM3. GM3 deficiency in humans can result in epilepsy and visual impairment. To investigate whether a deficiency of GM3 is involved in visual function, ST3GAL5-/- mice with mutations in the ST3GAL5 gene-coded GM3 synthase were employed. Materials and Methods: Sixty mice were employed in this study. The glycosphingolipids of mice retinas were analyzed through high performance thin layer chromatography. The morphology of the optic nerves and retinas were evaluated by hematoxylin and eosin staining and immunohistochemical analysis using an anti-glial fibrillary acidic protein (GFAP) antibody. An electroretinogram (ERG) was applied on the eyes of 4, 9, 12, and 14-month-old mice. Also, visual evoked potential (VEP) was applied on 13-month-old mice. Results: The GM3 in the retinas was detected in ST3GAL5+/+ mice but not ST3GAL5-/- mice. Also, GM1b and GD1α expressions and lactosylceramide accumulation were found in the ST3GAL5-/- mouse retinas. There was no significant difference in GFAP expression in the retinas or optic discs between ST3GAL5+/+ and ST3GAL5-/- mice. Furthermore, the outcome of ERG and VEP analysis showed no disparity between the two strains in 13 and 14-month-old mice. Conclusion: In the eye, neither histopathological abnormalities nor abnormal functions of the retina were found in GM3-deficient mice. Differing from the situation in patients with GM3 deficiency, the lack of GM3 in mice did not lead to optic nerve atrophy.


Asunto(s)
Retina/enzimología , Sialiltransferasas/deficiencia , Agudeza Visual/fisiología , Animales , Antígenos CD/metabolismo , Combinación de Medicamentos , Electrorretinografía , Potenciales Evocados Visuales/fisiología , Gangliósido G(M1)/análogos & derivados , Gangliósido G(M1)/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Lactosilceramidos/metabolismo , Ratones , Ratones Endogámicos C57BL , Midriáticos/farmacología , Fenilefrina/farmacología , Proteína Quinasa C-alfa/metabolismo , Pupila/efectos de los fármacos , Tropicamida/farmacología
19.
Osteoarthritis Cartilage ; 27(2): 314-325, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30471358

RESUMEN

OBJECTIVE: Gangliosides, ubiquitously existing membrane components that modulate transmembrane signaling and mediate cell-to-cell and cell-to-matrix interactions, are key molecules of inflammatory and neurological disorders. However, the functions of gangliosides in the cartilage degradation process remain unclear. We investigated the functional role of gangliosides in cartilage metabolism related to osteoarthritis (OA) pathogenesis. DESIGN: We generated knockout (KO) mice by targeting the ß1, 4-N-acetylgalactosaminyltransferase (GalNAcT) gene, which encodes an enzyme of major gangliosides synthesis, and the GD3 synthase (GD3S) gene, which encodes an enzyme of partial gangliosides synthesis. In vivo OA and in vitro cartilage degradation models were used to evaluate the effect of gangliosides on the cartilage degradation process. RESULTS: The GalNAcT and GD3S KO mice developed and grew normally; nevertheless, OA changes in these mice were enhanced with aging. The GalNAcT KO mice showed significantly enhanced OA progression compared to GD3S mice in vivo. Both GalNAcT and GD3S KO mice showed severe IL-1α-induced cartilage degradation ex vivo. Phosphorylation of MAPKs was enhanced in both GalNAcT and GD3S KOs after IL-1α stimulation. Gangliosides modulated by GalNAcT or GD3S rescued an increase of MMP-13 induced by IL-1α in mice lacking GalNAcT or GD3S after exogenous replenishment in vitro. CONCLUSION: These data show that the deletion of gangliosides in mice enhanced OA development. Moreover, the gangliosides modulated by GalNAcT are important for cartilage metabolism, suggesting that GalNAcT is a potential target molecule for the development of novel OA treatments.


Asunto(s)
Artritis Experimental/metabolismo , Cartílago Articular/metabolismo , Gangliósidos/fisiología , Osteoartritis/metabolismo , Envejecimiento/fisiología , Animales , Artritis Experimental/patología , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Progresión de la Enfermedad , Gangliósidos/deficiencia , Gangliósidos/farmacología , Eliminación de Gen , Crecimiento/genética , Interleucina-1alfa/antagonistas & inhibidores , Interleucina-1alfa/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Metaloproteinasa 13 de la Matriz/biosíntesis , Ratones Noqueados , N-Acetilgalactosaminiltransferasas/deficiencia , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/fisiología , Óxido Nítrico/metabolismo , Osteoartritis/patología , Sialiltransferasas/deficiencia , Sialiltransferasas/genética , Sialiltransferasas/fisiología , Técnicas de Cultivo de Tejidos , Regulación hacia Arriba/fisiología , Polipéptido N-Acetilgalactosaminiltransferasa
20.
J Child Neurol ; 33(13): 825-831, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30185102

RESUMEN

GM3 synthase deficiency is due to biallelic pathogenic variants in ST3GAL5, which encodes a sialyltransferase that synthesizes ganglioside GM3. Key features of this rare autosomal recessive condition include profound intellectual disability, failure to thrive and infantile onset epilepsy. We expand the phenotypic spectrum with 3 siblings who were found by whole exome sequencing to have a homozygous pathogenic variant in ST3GAL5, and we compare these cases to those previously described in the literature. The siblings had normal birth history, subsequent developmental stagnation, profound intellectual disability, choreoathetosis, failure to thrive, and visual and hearing impairment. Ichthyosis and self-injurious behavior are newly described in our patients and may influence clinical management. We conclude that GM3 synthase deficiency is a neurodevelopmental disorder with consistent features of profound intellectual disability, choreoathetosis, and deafness. Other phenotypic features have variable expressivity, including failure to thrive, epilepsy, regression, vision impairment, and skin findings. Our analysis demonstrates a broader phenotypic range of this potentially under-recognized disorder.


Asunto(s)
Corea/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Mutación/genética , Sialiltransferasas/deficiencia , Adolescente , Amoxapina , Niño , Corea/complicaciones , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/genética , Sordera/complicaciones , Sordera/genética , Imagen de Difusión Tensora , Epilepsia/complicaciones , Salud de la Familia , Femenino , Humanos , Discapacidad Intelectual/complicaciones , Masculino , PubMed/estadística & datos numéricos , Sialiltransferasas/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...